
An exploratory analysis of Spotify data

Carlos Medina

10/29/22

Table of contents

Preface 4
Getting Started . 4
Table of Contents . 4
Tools . 5
About me . 5

I Consuming the api 6

1 An artist’s analysis 7
1.1 API . 7
1.2 Libraries . 7
1.3 Configuration . 8
1.4 Workflow . 9
1.5 Artist profile . 9
1.6 Top Tracks . 11
1.7 Length vs popularity . 12
1.8 Release Date and popularity . 14
1.9 Conclusion . 16

2 Albums, dates and popularity 18
2.1 API . 18
2.2 Libraries . 18
2.3 Workflow . 20
2.4 Albums . 20
2.5 Popularity . 22
2.6 Graphs . 22
2.7 Conclusion . 24

3 Geolocation analysis 25
3.1 Libraries . 25
3.2 Workflow . 27
3.3 Get the data . 27
3.4 How many markets can each album have? . 28
3.5 What is the market with more albums? . 29

2

II Analyzing my listening patterns 32

4 Getting and cleaning the data 33
4.1 Requesting the data from Spotify . 33
4.2 Cleaning the data . 33

4.2.1 JSON Files . 33
4.2.2 Importing the data . 34

5 Dashboard template creation 35
5.1 Template creation . 35

6 Exploratory analysis 37
6.1 Overall . 37

6.1.1 Listening trend over the years - Line and clustered column chart 37
6.1.2 Shuffle and skipped times - Gauge . 38
6.1.3 Most frequent artists - Stacked bar char 38

6.2 Platform and Geo . 38
6.2.1 Trend of platform over the years - Ribbon chart 38
6.2.2 Geo Data - ArcGIS maps . 39

6.3 Artists . 40
6.3.1 Most listened artist over the years - Ribbon chart 40

6.4 Listening time . 40
6.4.1 Played time over the years - Scatter chart 40
6.4.2 Average duration by track (m) - Multi-row card 41

7 PowerBI and python 42
7.0.1 Radar Chart . 43

III Music trends in south america 46

8 Music trends in south america 47

9 Version history 48

3

Preface

A data visualization curriculum of interactive notebooks using Quarto, Plotly, PowerBi and
Google Data Studio. This document was made to be part of my portfolio as a data analyst.
For this book I took one of the subjects that I love the most, music; And using the Spotify
API and my listening historic data I will explore the many options we have to display data
appropriately.

Getting Started

Before showing code and data, I will explain the following points:

• This document contains multiple Jupyter Notebooks which are available for download
in the Github repository.

• Most of the graphs were created with Plotly to take advantage of its visualization ad-
vantages with JS.

• The pages were made with markdown and rendered with Quarto.

Table of Contents

This document is divided into three sections, in each one I will use a different tool and analyze
different sections in the data.

• Consuming the api: In this section I will show how to consume the Spotify API and
plot the data with Plotly.

• Analyzing my listening patterns: My personal data will be analyzed to see how I
listen to music and what are my favorite artists. This seccion will be made with PowerBI.

• Music trends in south america: In this section I will get data using the API again,
but the tool will be Google Data Studio.

4

https://quarto.org
https://plotly.com/
https://powerbi.microsoft.com/en-au/
https://datastudio.google.com//

Tools

• Python
• Jupyter Notebook
• Plotly
• PowerBI
• Google Data Studio

About me

I am Carlos Medina, I have 10 years of experience in InfoSec and now I am starting with data
analysis, you can see all the information on my personal page.

5

https://chmedina.com/

Part I

Consuming the api

6

1 An artist’s analysis

In this first part I’m going to work with the /artist/{id} session of the Spotify API. With
this functionality general data can be extracted. This general data contains things as genres,
popularity and followers. I will also work with the artist’s top 10 songs to make a very general
summary of the artist’s profile, which will give us ideas about their years of popularity, duration
of the songs and most well-known albums.

1.1 API

A small summary of the functionalities that I will use:

GET /artist/{id}
GET /artist/{id}/albums
GET /artist/{id}/top-tracks

Parameter Type Description
id
(required)

string Get Spotify catalog information for a single artist identified by their
unique Spotify ID.The ID of the artist.

albums string Get Spotify catalog information about an artist’s albums.
top-tracks string Get Spotify catalog information about an artist’s top tracks by country.

As I use each parameter, I will explain the configuration and filtering options they have.

1.2 Libraries

I import the libraries I will need:

from pandas import json_normalize
import requests
import plotly.express as px
import plotly.io as pio

7

pio.renderers.default = "plotly_mimetype+notebook_connected"
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import base64
from IPython.display import Image, display

def mm(graph):
graphbytes = graph.encode("ascii")
base64_bytes = base64.b64encode(graphbytes)
base64_string = base64_bytes.decode("ascii")
display(Image(url="https://mermaid.ink/img/" + base64_string))

1.3 Configuration

Before thinking about making requests to obtain data, you must first create an app in Spotify,
this app will give you the possibility to authenticate yourself and make the requests that
are needed. To make this app you can go to this link where you will find all the necessary
information. Link

After the app has been created, the authentication data is delivered, similar to these:

CLIENT_ID = '81e800e81ecf4997b5b9fb12efeb3ff2'
CLIENT_SECRET = '0e4364f440f148779d8a9f17976ecf1b'

(These were removed after making this publication)

When the app authenticates, Spotify will return a token, this token is the one used in the
header to make all requests. All tokens have a time to live, I’m not sure, but I think it’s 3600
seconds, I recommend looking at the documentation if this may be a problem for you.

In the following code blocks I show how to create a function to get this token and then store
it in the header variable.

Function to get the token
def get_token():

url = 'https://accounts.spotify.com/api/token'
auth_response = requests.post(url, {

'grant_type': 'client_credentials',
'client_id': CLIENT_ID,
'client_secret': CLIENT_SECRET,

})

8

https://developer.spotify.com/dashboard/applications

if auth_response.status_code != 200:
raise Exception('Error getting token')

else:
auth_response_data = auth_response.json()
return auth_response_data['access_token']

Get token
access_token = get_token()
header = {

'Authorization': 'Bearer {token}'.format(token=access_token),
'accept':'application/json'

}

base_url = 'https://api.spotify.com/v1/'

1.4 Workflow

The workflow from when the user enters the name of the artist until it is saved in the dataframes
is represented in the following diagram

mm("""
graph TD

A[user_input] -->|Search| B(GET item 0)
B --> C(save artist_id)
C --> D{GET request}
D -->|/artist/artist_id/albums| E[df]
D -->|/artist/artist_id/top-tracks| F[df]

""")

<IPython.core.display.Image object>

1.5 Artist profile

I ask the user to enter the name of the user they want to analyze, and then I use Spotify’s
search to get the artist ID.

9

The ID is a unique text string for each artist/song/album or list and this ID is one of the
most important parameters to make requests since it allow us to have more precision in our
needs.

The output of the search is a list, and I take the first result.

#ask for user input for artist name
artist_name = input('Enter artist name: ')
print('the artist name is: ', artist_name)

the artist name is: Rush

#get artist id
artist_id = requests.get(base_url + 'search?q={}&type=artist'.format(artist_name), headers=header).json()['artists']['items'][0]['id']

The structure of the json object delivered by /artist/{id} can be found at this link. Link

#get artist profile
r_artist_profile = requests.get(base_url + 'artists/{}'.format(artist_id), headers=header).json()
df_artist = json_normalize(r_artist_profile)
df_artist.columns

Index(['genres', 'href', 'id', 'images', 'name', 'popularity', 'type', 'uri',
'external_urls.spotify', 'followers.href', 'followers.total'],

dtype='object')

I don’t need all this information, so I select only the necessary columns:

df_artist.drop(['images', 'uri', 'href', 'followers.href','type'], axis=1, inplace=True)

I always change the name of the columns to make it easier to read and understand the data.

#change column names
df_artist.columns = ['Genres', 'ID', 'Artist', 'Popularity', 'URL', 'Followers']

And finally a have a very brief overview of the artist:

df_artist.transpose()

10

https://developer.spotify.com/documentation/web-api/reference/#/operations/get-an-artist

0
Genres [album rock, art rock, canadian metal, classic...
ID 2Hkut4rAAyrQxRdof7FVJq
Artist Rush
Popularity 66
URL https://open.spotify.com/artist/2Hkut4rAAyrQxR...
Followers 1975105

The popularity of the artist. The value will be between 0 and 100, with 100 being the most
popular. The artist’s popularity is calculated from the popularity of all the artist’s tracks.
With this we see that Rush is not a very popular band.

1.6 Top Tracks

After obtaining the general profile of the artist, the first thing I will do is analyze the most
popular songs. For this I must use the artists/{id}/top-tracks section and specify the
country since these trends change from country to country.

For this example I will use the United States since for the band I chose it was (and still is) its
biggest market.

#get top tracks of the artist
r_artist_top_tracks = requests.get(base_url + 'artists/{}/top-tracks?market=US'.format(artist_id), headers=header).json()
df_artist_top_tracks = json_normalize(r_artist_top_tracks['tracks'])
df_artist_top_tracks['Artist'] = df_artist_top_tracks['artists'].apply(lambda x: x[0]['name'])
df_artist_top_tracks. columns

Index(['artists', 'disc_number', 'duration_ms', 'explicit', 'href', 'id',
'is_local', 'is_playable', 'name', 'popularity', 'preview_url',
'track_number', 'type', 'uri', 'album.album_type', 'album.artists',
'album.external_urls.spotify', 'album.href', 'album.id', 'album.images',
'album.name', 'album.release_date', 'album.release_date_precision',
'album.total_tracks', 'album.type', 'album.uri', 'external_ids.isrc',
'external_urls.spotify', 'Artist'],

dtype='object')

Again I don’t need all this information, so I select only the necessary columns:

11

df_artist_top_tracks=df_artist_top_tracks.drop(['artists',
'href',
'is_local',
'is_playable',
'preview_url',
'type',
'uri',
'album.album_type',
'album.artists',
'album.external_urls.spotify',
'album.href',
'album.release_date_precision',
'album.type',
'album.uri',
'external_ids.isrc',
'external_urls.spotify'], axis=1)

The information of the duration is in milliseconds, I convert it to minutes that is easier to read
and understand.

#duration_ms to minutes
df_artist_top_tracks['Duration'] = df_artist_top_tracks['duration_ms'].apply(lambda x: x/60000)

The release date is in the format YYYY-MM-DD, but I only need the year, so I convert it to
a year.

#change format of release date
df_artist_top_tracks['Release Date'] = df_artist_top_tracks['album.release_date'].apply(lambda x: x[:4])
#sort by release date
df_artist_top_tracks = df_artist_top_tracks.sort_values(by='Release Date')
df_artist_top_tracks.head(2)

disc_number duration_ms explicit id name popularity track_number album.id album.images album.name album.release_date album.total_tracks Artist Duration Release Date
5 1 429973 False 1gkn90ExKRNAOlhDs4RoW0 Working Man 60 8 57ystaP7WpAOxvCxKFxByS [{'height': 640, 'url': 'https://i.scdn.co/ima... Rush 1974-01-01 8 Rush 7.166217 1974
4 1 202200 False 54TaGh2JKs1pO9daXNXI5q Fly By Night 61 5 3ZtICWkqezf0bBTUwY1Khe [{'height': 640, 'url': 'https://i.scdn.co/ima... Fly By Night 1975-02-15 8 Rush 3.370000 1975

1.7 Length vs popularity

For visualization my two favorite libraries are Seaborn and Plotly, for this example I will use
Plotly to take advantage of its attributes with javascript and that the visualization can be a

12

little more comfortable.

#plot top tracks
fig = px.scatter(df_artist_top_tracks,

x='popularity',
y='Duration',
color='name',
title='Top Tracks of {}'.format(artist_name),
#marginal_y="violin",
#marginal_x="violin",
trendline="ols",
template="ggplot2",
width=800,
height=600,
labels={'popularity':'Popularity', 'Duration':'Duration (min)'},
)

fig.update_layout(width=700, height=600)
fig.show()

Unable to display output for mime type(s): text/html

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html

In this graph I can see that the popularity is inversely proportional to the duration of the
song.

In the first part of the graph, there are three songs that are longer than 5 minutes, but are
the lowest in popularity, those songs are:

• Subdivisions
• Red Barchetta
• Working man

(A song that talks about not being popular is the least popular xD)

On the other hand, at the other extreme, you see a single song, it lasts less than 5 minutes,
and it is the most popular, Tom Sawyer.

Analyzing the previous graph, doubts arise such as: - Is Rush’s popularity related to the year?
- The other popular songs be on the same album as Tom Sawyer?

13

1.8 Release Date and popularity

I will use the Spotify API to get the release date of the album that Tom Sawyer is on.

#group df by album and count and order by count
df_artist_top_tracks_grouped = df_artist_top_tracks.groupby(['album.name', 'Release Date']).size().reset_index(name='Count')
#change column name
df_artist_top_tracks_grouped.columns = ['Album', 'Release Date', 'Count']
#sort by count
df_artist_top_tracks_grouped = df_artist_top_tracks_grouped.sort_values(by='Release Date', ascending=True)
#set release date as int
df_artist_top_tracks_grouped['Release Date'] = df_artist_top_tracks_grouped['Release Date'].astype(int)
df_artist_top_tracks_grouped

Album Release Date Count
4 Rush 1974 1
1 Fly By Night 1975 1
0 A Farewell To Kings 1977 1
3 Permanent Waves 1980 2
2 Moving Pictures (2011 Remaster) 1981 4
5 Signals 1982 1

Since this is a fairly small dataframe, the answer can be seen quite obviously in the table
above, but with larger dataframes, it won’t be, so I still decided to plot it:

fig=px.line(df_artist_top_tracks_grouped,
x='Release Date',
y='Count',
text='Count',
#color='Album',
title='Top Tracks of {}'.format(artist_name),
template="ggplot2",
width=800,
height=500,
labels={'Release Date':'Release Date', 'Count':'Count'},
)

fig.update_traces(textposition="bottom right")
fig.update_layout(width=740, height=600)
fig.show()

14

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html

The graph shows that the most popular songs are on the same album as Tom Sawyer, and the
release date is related to the popularity.

Could it be that 1981 was the year Rush released more albums? To find out this, I have to
get all the albums I do a simple timeline. In the next part I use the API to get the info and a
simple while loop for pagination.

#ger artist albums limit 50
r_albums = requests.get(base_url + 'artists/' + artist_id + '/albums', headers=header, params={'limit':50, 'include_groups':'album'})
r_albums=r_albums.json()
df_albums=json_normalize(r_albums['items'])
#get next page
while r_albums['next']:

r_albums = requests.get(r_albums['next'], headers=header)
r_albums=r_albums.json()
df_albums=df_albums.append(json_normalize(r_albums['items']))

df_albums=df_albums.drop(['album_type',
'artists',
'href',
'images',
'release_date_precision',
'external_urls.spotify',
'uri',
'type'],axis=1)

df_albums['Release Date'] = df_albums['release_date'].apply(lambda x: x[:4])

df_albums.head(2)

album_group available_markets id name release_date total_tracks Release Date
0 album [CA, JP] 5nZ5I0gA3x6KEkIpHQWw4l Moving Pictures (40th Anniversary) 2022-04-15 26 2022
1 album [AD, AE, AG, AL, AM, AO, AR, AT, AU, AZ, BA, B... 2PBaIv21OWCmecNenZionV Moving Pictures (40th Anniversary Super Deluxe) 2022-04-15 26 2022

After having all the albums, I’m going to plot both

df_artist_top_tracks_grouped.drop(['Album'], axis=1, inplace=True)

#group by release date and sort by count
df_albums_grouped = df_albums.groupby(['Release Date']).size().reset_index(name='Count')

15

df_albums_grouped.columns = ['Release Date', 'Count']
df_albums_grouped = df_albums_grouped.sort_values(by='Release Date', ascending=True)
df_albums_grouped['Release Date'] = df_albums_grouped['Release Date'].astype(int)

#graph df_artist_top_tracks_grouped and df_albums_grouped
fig = make_subplots(specs=[[{"secondary_y": True}]])
fig.add_trace(go.Scatter(x=df_artist_top_tracks_grouped['Release Date'],

y=df_artist_top_tracks_grouped['Count'],
name='Top Tracks'),

secondary_y=False)
fig.add_trace(go.Scatter(x=df_albums_grouped['Release Date'],

y=df_albums_grouped['Count'],
name='Released Albums'),

secondary_y=True)
fig.update_layout(title='Top Tracks and Albums of {}'.format(artist_name),

template="ggplot2",
width=740,
height=600,
yaxis_title="Count",
yaxis2_title="Count")

fig.show()

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html

1.9 Conclusion

After the above analysis, you can see a simple use of the Spotify API.

As conclusions:

• The most popular year for Rush was 1981 and this popularity is related to the fact that
it was the time when they released the most albums.

• Most Rush songs exceed 5 minutes in length and are not as popular as the shorter ones.

• As of 2020 Rush continued to release albums, but none of these had the popularity of
Moving Pictures in 1981.

But…

• Why these following albums weren’t so popular?
• Were there important changes in the structure of the songs?

16

• Why is less activity seen in the 90s?

To answer these questions, a more complete analysis must be made, which is shown in the
second part.

17

2 Albums, dates and popularity

In this part I’m going to work with the /albums/{id} API section which return all the
information Spotify has of an album. I use this data to answer questions like:

• Does the era affect the amount of tracks that an album had?
• The popularity of an album is it affected by the era?
• The number of tracks it’s related to the popularity of the album?

Remember that the analysis of the first part was done with a small sample of artist data, so
far we have the following partial conclusions:

• The most popular year for Rush was 1981 and this popularity is related to the fact that
it was the time when they released the most albums.

• Most Rush tracks exceed 5 minutes in length and are not as popular as the shorter ones.

• As of 2020 Rush continued to release albums, but none of these had the popularity of
Moving Pictures in 1981.

2.1 API

A small summary of the functionalities that I will use:

GET /albums/{id}/albums?market=US

Parameter Type Description
id (required) string The ID of the album

2.2 Libraries

Import the libraries I will need:

18

from pandas import json_normalize
import requests
import plotly.express as px
import plotly.io as pio
pio.renderers.default = "plotly_mimetype+notebook_connected"
import base64
from IPython.display import Image, display

def mm(graph):
graphbytes = graph.encode("ascii")
base64_bytes = base64.b64encode(graphbytes)
base64_string = base64_bytes.decode("ascii")
display(Image(url="https://mermaid.ink/img/" + base64_string))

This is the section of the authentication and generation of the token that was already explained
in the first section

CLIENT_ID = '81e800e81ecf4997b5b9fb12efeb3ff2'
CLIENT_SECRET = '0e4364f440f148779d8a9f17976ecf1b'
def get_token():

url = 'https://accounts.spotify.com/api/token'
auth_response = requests.post(url, {

'grant_type': 'client_credentials',
'client_id': CLIENT_ID,
'client_secret': CLIENT_SECRET,

})
if auth_response.status_code != 200:

raise Exception('Error getting token')
else:

auth_response_data = auth_response.json()
return auth_response_data['access_token']

access_token = get_token()
header = {

'Authorization': 'Bearer {token}'.format(token=access_token),
'accept':'application/json'

}
base_url = 'https://api.spotify.com/v1/'

To obtain a dataframe with the albums of an artist, a few previous steps must first be carried
out:

1- Ask the user for the artists. 2- Get the artist ID 3- Extract all the albums of the artist.

19

Steps one and two were already explained in the first section:

#ask for user input for artist name
artist_name = input('Enter artist name: ')
print('the artist name is: ', artist_name)
#get artist id
artist_id = requests.get(base_url + 'search?q={}&type=artist'.format(artist_name), headers=header).json()['artists']['items'][0]['id']

the artist name is: Rush

2.3 Workflow

The workflow from when the user enters the name of the artist, the request to get all de details
and then saved in the dataframes is represented in the following diagram:

mm("""
graph TD

A[user_input] -->|Search| B(GET item 0)
B --> |save artist_id| D{GET request}
D -->|/artist/artist_id/albums| E[df album list]
D --> F[df albums details]
F --> E
E --> |/artist/album_id/| F

""")

<IPython.core.display.Image object>

2.4 Albums

In order to obtain the albums of an artist, I will use the /artists/{id}/albums API section.
In the next part I use the API to get the info and a simple while loop for pagination. I will
use the limit parameter to limit the number of albums per request to 50 and the offset
parameter to move through the pages. I will also use the include_groups parameter to only
get the albums and not the singles or compilations.

The structure of the json object delivered by /artists/{id}/albums can be found at this link.
Link

20

https://developer.spotify.com/documentation/web-api/reference/#/operations/get-an-artists-albums

#extract all albums of artist
r_albums = requests.get(base_url + 'artists/' + artist_id + '/albums?market=US', headers=header, params={'limit':50, 'include_groups':'album'})
r_albums=r_albums.json()
df_albums=json_normalize(r_albums['items'])
#get next page
while r_albums['next']:

r_albums = requests.get(r_albums['next'], headers=header)
r_albums=r_albums.json()
df_albums=df_albums.append(json_normalize(r_albums['items']))

df_albums=df_albums.drop(['album_type',
'artists',
'href',
'images',
'release_date_precision',
'external_urls.spotify',
'uri',
'type'],axis=1)

df_albums['Release Date'] = df_albums['release_date'].apply(lambda x: x[:4])
df_albums.head(5)

album_group id name release_date total_tracks Release Date
0 album 2PBaIv21OWCmecNenZionV Moving Pictures (40th Anniversary Super Deluxe) 2022-04-15 26 2022
1 album 06hsxtm7Y1gDM5sNliCD5d Permanent Waves (40th Anniversary) 2020-05-29 18 2020
2 album 5G0G9TLLWr8n1abpY4ihmy Hemispheres (40th Anniversary) 2018-11-16 14 2018
3 album 3bMJQ8LQWi42IAhVPP0M9O A Farewell To Kings (40th Anniversary Deluxe E... 2017-09-01 26 2017
4 album 6q4SMJ8ggxBVrCzPSnDl7c 2112 (40 Anniversary) 2016-12-09 19 2016

Despite having used include_groups, Spotify’s response contains some live albums, anniver-
sary editions and others that generate noise in the data. Since my goal is to get only the studio
albums, the first step is to delete the albums I don’t need.

#delete live albums
df_albums=df_albums[~df_albums['name'].str.contains('Live|Anniversary|Remix|Tour|Stage|Retrospective|Chronicles|R30|A Show Of Hands|Closer')]
#loower case all names
df_albums['name']=df_albums['name'].str.lower()
df_albums.reset_index(drop=True, inplace=True)
df_albums.head(5)

21

album_group id name release_date total_tracks Release Date
0 album 744i0LypfMwHHrKhzsqAx0 clockwork angels 2012-06-11 12 2012
1 album 7hgcHQbB7xYr75qPPulfro snakes & arrows 2007-04-27 13 2007
2 album 0mT6ezOOTIUucAF9csghFE feedback 2004-06-29 8 2004
3 album 5fwkYtHrckROAs4ALRJ2Cz test for echo (2004 remaster) 1996-09-06 11 1996
4 album 6JNHWbFco4bnRP5ybKGriN counterparts (2004 remaster) 1993-09-28 11 1993

2.5 Popularity

In order to get the popularity of every album, I use the /albums/{id} API section and to
concatenate in the dataframe.

#get the popularity of every album
df_albums['popularity'] = df_albums['id'].apply(lambda x: requests.get(base_url + 'albums/' + x, headers=header).json()['popularity'])
df_albums.head(5)

album_group id name release_date total_tracks Release Date popularity
0 album 744i0LypfMwHHrKhzsqAx0 clockwork angels 2012-06-11 12 2012 37
1 album 7hgcHQbB7xYr75qPPulfro snakes & arrows 2007-04-27 13 2007 34
2 album 0mT6ezOOTIUucAF9csghFE feedback 2004-06-29 8 2004 28
3 album 5fwkYtHrckROAs4ALRJ2Cz test for echo (2004 remaster) 1996-09-06 11 1996 33
4 album 6JNHWbFco4bnRP5ybKGriN counterparts (2004 remaster) 1993-09-28 11 1993 41

2.6 Graphs

The first graph shows the number of albums per year and the number of tracks per album.

#group by name and release date
df_tracks_and_year=df_albums.groupby(['name']).agg({'total_tracks':'first','Release Date':'first', 'popularity':'first'})
#sort by release date
df_tracks_and_year=df_tracks_and_year.sort_values(by=['Release Date'])
#reset index
df_tracks_and_year.reset_index(drop=True, inplace=True)
#number of albums per year
fig = px.scatter(df_tracks_and_year,

x='Release Date',
y='total_tracks',

22

color='Release Date',
color_continuous_scale='Viridis',
marginal_x="histogram",
labels={'x':'Release year', 'y':'Number of Tracks'},
template="ggplot2")

fig.update_layout(title='Number of Tracks per Album',
width=700,
height=600)

fig.show()

Unable to display output for mime type(s): text/html

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html

• Does the era affect the amount of tracks that an album had?

R:// Yes! The number of tracks per album has increased over time. The first album had 8
tracks and the last one 12 tracks.

#sotring by release date
df_albums=df_albums.sort_values(by=['Release Date'], ascending=True)
#heatmap of popularity, release date and number of tracks
fig = px.density_heatmap(df_albums,

x="Release Date",
y="popularity",
z="total_tracks",
#histfunc="max",
color_continuous_scale="Blues",
labels={'popularity':'Popularity', 'Release Date':'Release Date', 'total_tracks':'Number of Tracks'},
template="ggplot2")

fig.update_layout(title='Heatmap: Release date, popularity and number of tracks per album')
fig.layout['coloraxis']['colorbar']['title'] = 'Number of Tracks'
fig.update_layout(width=700, height=600)
fig.show()

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html

• The popularity of an album is it affected by the era? R:// Yes! The popularity of an
album is affected by the era. The most popular albums were released in the 70s.

• The number of tracks it’s related to the popularity of the album? R:// Yes! The more
tracks an album has, the less popular it is.

23

2.7 Conclusion

The most popular years of Rush were the 70s, in the beginning of the band. As time increased,
the songs became shorter and the albums did not enjoy as much popularity.

24

3 Geolocation analysis

By now we know that Rush was a very popular band in the 70s and 80s mainly for their short
songs, however, their focus was more towards long songs especially in their first albums. As
time passed the band dedicated themselves to making not so long songs, but the albums had
more and more.

Now, what can Spotify tell us about geolocation? In this part I will use Spotify’s “markets”
field to determine if Rush albums are in all countries.

GET /artist/{id}
GET /artist/{id}/albums

Parameter Type Description
id
(required)

string Get Spotify catalog information for a single artist identified by their
unique Spotify ID.The ID of the artist.

albums string Get Spotify catalog information about an artist’s albums.

3.1 Libraries

Import the libraries I will need:

from pandas import json_normalize
import requests
import plotly.express as px
import plotly.io as pio
pio.renderers.default = "plotly_mimetype+notebook_connected"
import pandas as pd
from pycountry_convert import country_alpha2_to_country_name, country_name_to_country_alpha3

import base64
from IPython.display import Image, display

def mm(graph):

25

graphbytes = graph.encode("ascii")
base64_bytes = base64.b64encode(graphbytes)
base64_string = base64_bytes.decode("ascii")
display(Image(url="https://mermaid.ink/img/" + base64_string))

This is the section of the authentication and generation of the token that was already explained
in the first section

CLIENT_ID = '81e800e81ecf4997b5b9fb12efeb3ff2'
CLIENT_SECRET = '0e4364f440f148779d8a9f17976ecf1b'
def get_token():

url = 'https://accounts.spotify.com/api/token'
auth_response = requests.post(url, {

'grant_type': 'client_credentials',
'client_id': CLIENT_ID,
'client_secret': CLIENT_SECRET,

})
if auth_response.status_code != 200:

raise Exception('Error getting token')
else:

auth_response_data = auth_response.json()
return auth_response_data['access_token']

access_token = get_token()
header = {

'Authorization': 'Bearer {token}'.format(token=access_token),
'accept':'application/json'

}
base_url = 'https://api.spotify.com/v1/'

#ask for user input for artist name
artist_name = input('Enter artist name: ')
print('the artist name is: ', artist_name)
#get artist id
artist_id = requests.get(base_url + 'search?q={}&type=artist'.format(artist_name), headers=header).json()['artists']['items'][0]['id']

the artist name is: Rush

26

3.2 Workflow

The workflow from when the user enters the name of the artist, the request to get all de
details and then transform the two-letters country code to the full name of the country is the
following:

mm("""
graph TD

A[user_input] -->|Search| B(GET item 0)
B --> |save artist_id| D{GET request}
D -->|/artist/artist_id/albums| E[df album list and available_markets]
E --> |Transform | F[df available_markets in three-letter standard standard]

""")

<IPython.core.display.Image object>

3.3 Get the data

To get all the IDs and markets available for albums under the Rush name, I have to make a
request to /albums.

As in the previous sections I will remove some columns that I don’t need and I will extract
the year of publication in a separate column.

#extract all albums of artist
r_albums = requests.get(base_url + 'artists/' + artist_id + '/albums', headers=header, params={'limit':50, 'include_groups':'album'})
r_albums=r_albums.json()
df_albums=json_normalize(r_albums['items'])
#get next page
while r_albums['next']:

r_albums = requests.get(r_albums['next'], headers=header)
r_albums=r_albums.json()
df_albums=df_albums.append(json_normalize(r_albums['items']))

df_albums=df_albums.drop(['album_type',
'artists',
'href',
'images',
'release_date_precision',
'external_urls.spotify',
'uri',

27

'type'],axis=1)
df_albums['Release Date'] = df_albums['release_date'].apply(lambda x: x[:4])
df_albums.head(5)

album_group available_markets id name release_date total_tracks Release Date
0 album [CA, JP] 5nZ5I0gA3x6KEkIpHQWw4l Moving Pictures (40th Anniversary) 2022-04-15 26 2022
1 album [AD, AE, AG, AL, AM, AO, AR, AT, AU, AZ, BA, B... 2PBaIv21OWCmecNenZionV Moving Pictures (40th Anniversary Super Deluxe) 2022-04-15 26 2022
2 album [CA, JP] 3EUhoI6JRdxYzml9gHWzJI Permanent Waves (40th Anniversary) 2020-05-29 18 2020
3 album [AD, AE, AG, AL, AM, AO, AR, AT, AU, AZ, BA, B... 06hsxtm7Y1gDM5sNliCD5d Permanent Waves (40th Anniversary) 2020-05-29 18 2020
4 album [CA] 0UQOn626iDanxtIZlnQyUK Hemispheres (40th Anniversary) 2018-11-16 14 2018

3.4 How many markets can each album have?

#COUNT NUMBER OF ALBUMS AVAILABLE per MARKET
df_albums['count_available_markets'] = df_albums['available_markets'].apply(lambda x: len(x))
#sort count_available_markets
df_albums = df_albums.sort_values(by=['Release Date'], ascending=True)
df_albums = df_albums.reset_index(drop=True)
df_albums.head(5)

album_group available_markets id name release_date total_tracks Release Date count_available_markets
0 album [AD, AE, AL, AM, AO, AR, AT, AU, AZ, BA, BD, B... 43OvqHDAEOUKfHNFPCgsvf The First Us Tours 1974 23 1974 161
1 album [JP] 5foiAR3bxvhZ2660J8Nntg Rush 1974-03-01 8 1974 1
2 album [CA] 0lZRCf7prVEVVYjH5Im0TS Rush 1974-01-01 8 1974 1
3 album [AD, AE, AG, AL, AM, AO, AR, AT, AU, AZ, BA, B... 57ystaP7WpAOxvCxKFxByS Rush 1974-01-01 8 1974 178
4 album [JP] 4FZkxs4KHgwYJQ94cWMFqz Fly by Night 1975-02-15 8 1975 1

The following graph shows:

• How many releases are there for each album
• In how many markets is it available

They are organized by year of release

#density plot between release date and count_available_markets
fig = px.density_heatmap(df_albums,

x="name",
y="count_available_markets",

28

marginal_x="histogram",
template="ggplot2")

fig.update_layout(title='Top Tracks and Albums of {}'.format(artist_name),
width=1500,
height=800,
xaxis_title='Albums',
yaxis_title='Number of Available Markets')

fig.update_layout(width=700, height=600)
fig.show()

Unable to display output for mime type(s): text/html

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html

3.5 What is the market with more albums?

There are several points here: I must take into account that Spotify returns me a list of
countries per album, I must first extract that list and convert it into a dataframe. In the end
I will have a line for each album and market available.

df_available_markets=pd.DataFrame(df_albums['available_markets'].apply(lambda x: pd.Series(x)).stack().reset_index(level=1, drop=True), columns=['available_markets'])
#add the album name to the dataframe
df_available_markets['album_name'] = df_albums['name']
df_available_markets=df_available_markets.reset_index()
df_available_markets.head(5)

index available_markets album_name
0 0 AD The First Us Tours
1 0 AE The First Us Tours
2 0 AL The First Us Tours
3 0 AM The First Us Tours
4 0 AO The First Us Tours

Second point, to be able to work by market/country, I must group the data using this param-
eter.

#count number of albums per country
df_country = df_available_markets.groupby(['available_markets']).count()

29

df_country = df_country.reset_index()
df_country = df_country.rename(columns={'index':'count'})
df_country = df_country.sort_values(by=['count'], ascending=False)
df_country = df_country.reset_index(drop=True)
#drop album_name column
df_country = df_country.drop(['album_name'], axis=1)
df_country.head(5)

available_markets count
0 CA 43
1 DM 40
2 GT 40
3 TT 40
4 NI 40

Third point, Kosovo is a country recognized by Spotify, but not by the international standard
which Plotly uses, so to avoid errors, I remove it.

#drop the XK country
df_country = df_country.drop(df_country[df_country['available_markets'] == 'XK'].index)
df_country = df_country.reset_index(drop=True)

And finally, Spotify delivers the countries in a two-letter standard, but Plotly works with a
three-letter standard, to solve this problem I use the pycountry-convert library

#add country name to dataframe
df_country['country_name'] = df_country['available_markets'].apply(lambda x: country_alpha2_to_country_name(x))
df_country.head(5)

available_markets count country_name
0 CA 43 Canada
1 DM 40 Dominica
2 GT 40 Guatemala
3 TT 40 Trinidad and Tobago
4 NI 40 Nicaragua

#graph
fig = px.choropleth(df_country, locations="country_code",

30

color="count", # lifeExp is a column of gapminder
hover_name="country_name", # column to add to hover information
color_continuous_scale=px.colors.sequential.Plasma,
template="ggplot2")

fig.update_layout(title='Country distribution by {}'.format(artist_name))
fig.update_layout(width=700, height=600)
fig.show()

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html

The graph above shows several things:

• The country with the most albums available is Canada, it’s not surprising given that
Rush is a Canadian band.

• Most countries have the same number of albums.
• And apparently Spotify is not present in certain countries where the account is 0.

31

Part II

Analyzing my listening patterns

32

4 Getting and cleaning the data

4.1 Requesting the data from Spotify

In this part, I will analyze my personal data that Spotify has collected in the last 9 years. In
order to do this you first need the data, this must be requested from Spotify in the privacy
section of your account, here you will have three options:

• Account data
• Streaming history
• Technical information

For this post I chose to do it with my streaming history. Spotify took about a week to deliver
the data.

4.2 Cleaning the data

4.2.1 JSON Files

Spotify will deliver several json files which can be directly imported into PowerBI for analysis,
however this is something I am not comfortable with and I decided to make a small script to
transform them into a single csv file.

#convert json to csv
import json
import csv
#open json files
for i in range(0, 10):

with open('endsong_{}.json'.format(i)) as f:
data = json.load(f)

#json to dataframe
import pandas as pd
df = pd.DataFrame(data)
df.size
#convert dataframe to csv

33

https://www.spotify.com/us/account/privacy/

df.to_csv('endsong_{}.csv'.format(i), index=False)

4.2.2 Importing the data

After having the csv file, it is imported into Power BI and the steps I followed for this were:

1. Delete podcast related data as it is not relevant to me.
2. Rename columns appropriately
3. The “platform” column is divided by space to obtain the platform without its version, for

example, from having “Windows 7 (6.1.7601; x64; SP1; S)” it becomes only “Windows”
4. Create a new column where I transformed the duration of the songs from milliseconds

to minutes.

In the end my table looks like this:

Figure 4.1: Spotify Dataset 1 Preview

For now I don’t need more, so I can start creating the dashboard with PowerBi.

34

5 Dashboard template creation

To create a dashboard in PowerBi there are many steps and how to execute them can vary
depending on the analyst, I personally like to create the aesthetic part of the dashboard first
and then create the graphs.

5.1 Template creation

In this I chose to create a basic template which contains:

• Logo
• Background image
• Shapes to add transparencies in the colors
• Basic KPI of my musical tendencies.

The template is created in a separate page and then I can use it in the other pages. It finally
looks like this:

(I am a colorblind person, please bear with me.)

The KPIs shown were created with the distinct count, for example, if an artist was listened to
many times, it would only be counted once.

35

Figure 5.1: PowerBi Template

36

6 Exploratory analysis

Now that I have the template created, I start to explore and analyze the data to answer certain
questions like:

• What is the platform that I have used the most to listen?
• How my edge tendencies have changed over the years.
• Who are my favorite artists?
• It will be possible to analyze my state of mind through the years. ?

I have decided to split the data as follows:

• Overall : General data of my listening patterns.
• Platform and Geo : Analysis of the devices that I have used to listen to music and

the geolocations where I have done it.
• Artists : Analysis of artists over time.
• Listening time : My favorite artist will be the same one that I listen to the most?

6.1 Overall

6.1.1 Listening trend over the years - Line and clustered column chart

In this graph I can see relevant points for me:

• I started paying for Spotify at the end of 2013, I think this date coincides with the arrival
date of the service in Colombia, which was where I lived at the time.

• Trends were always on the rise, every year there were more artists and therefore more
albums to listen to.

• In the years 2020 and 2021, the years of the pandemic were where I listened music the
most, this is likely due to the long periods of quarantine to which the city where I live
was subjected.

37

Figure 6.1: Page Overall

6.1.2 Shuffle and skipped times - Gauge

Here I show how of all the records I have, I have listened to more than half in random mode,
but very rarely do I skip a song. I think this is directly correlated with the upward trends,
since my favorite Spotify lists are the personalized mixes that the platform creates for you,
and these mixes give you the opportunity to listen more and more artists according to your
tastes.

6.1.3 Most frequent artists - Stacked bar char

The information in this graph is quite clear, the artists that I have listened to the most in
these 9 years.

6.2 Platform and Geo

6.2.1 Trend of platform over the years - Ribbon chart

• The type of device that I use the most from 2013 to 2019 was a Windows PC. This is
related to the fact that the company where I worked in that period provided me with

38

Figure 6.2: Page Platform and Geo

this OS.

• For 2020 there are two important changes, the first change is that I buy a sound system
which connects directly to Spotify and I hardly use it on the PC anymore.

• The second important change in 2020 is that Mac OS (my PC) begins to have more
relevance.

• 2020 and 2021 my sound system had more use since those were the years of the pandemic
and I spent almost all my time at home.

• The last time I used an Android device was in 2014.

6.2.2 Geo Data - ArcGIS maps

A self explanatory graph. My main listening places.

39

Figure 6.3: Artists

6.3 Artists

6.3.1 Most listened artist over the years - Ribbon chart

In the Overall section I showed the artists that I listen to the most, so I decided to see how
they behaved over time, the graph is easy to read and Iron Maiden is always first, except for
the last two years where Steven Wilson and his mutation in Porcupine Tree has taken the
lead.

However, the most listened to artist is the one that I have dedicated the most time to?

6.4 Listening time

6.4.1 Played time over the years - Scatter chart

Iron Maiden is the artist I’ve heard the most songs from, however, it’s nowhere near as long as
I’ve heard Dream Theater. The difference between the most listened to artist and the longest
listening artist should be understood very well.

40

Figure 6.4: Listening time

6.4.2 Average duration by track (m) - Multi-row card

To analyze this phenomenon a little more, here I show the average length of a song by these
artists, and Dream Theater wins with an average length of seven and a half minutes.

41

7 PowerBI and python

I think that despite having all the data, there is still a lack of it that Spotify can give me about
my listening habits. For this I will use the API to extract the audio features of the songs, the
extracted data will be the following:

• Instrumentalness
• Acousticness
• Danceability
• Energy
• Liveness
• Speechiness

Documentation of these factors can be found here

To extract this data I use the following python script.

import pandas as pd
import requests
Function to get the token
def get_token():

url = 'https://accounts.spotify.com/api/token'
auth_response = requests.post(url, {

'grant_type': 'client_credentials',
'client_id': 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
'client_secret': 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',

})
if auth_response.status_code != 200:

raise Exception('Error getting token')
else:

auth_response_data = auth_response.json()
return auth_response_data['access_token']

Get token
access_token = get_token()
header = {

'Authorization': 'Bearer {token}'.format(token=access_token),
'accept':'application/json'

42

https://developer.spotify.com/documentation/web-api/reference/#/operations/get-audio-features

}
base_url = 'https://api.spotify.com/v1/audio-features/'
dataframe=pd.read_csv('endsong_9 copy.csv')
index_startpoint=0
#get the audio features for each song strating from the index_startpoint
for index, row in dataframe.iterrows():

if index >= index_startpoint:
url = base_url + row['track_id']
response = requests.get(url, headers=header)
if response.status_code != 200:

print('Error getting data')
else:

response_data = response.json()
dataframe.loc[index, 'acousticness'] = response_data['acousticness']
dataframe.loc[index, 'danceability'] = response_data['danceability']
dataframe.loc[index, 'energy'] = response_data['energy']
dataframe.loc[index, 'instrumentalness'] = response_data['instrumentalness']
dataframe.loc[index, 'liveness'] = response_data['liveness']
dataframe.loc[index, 'loudness'] = response_data['loudness']
dataframe.loc[index, 'speechiness'] = response_data['speechiness']
dataframe.loc[index, 'tempo'] = response_data['tempo']
dataframe.loc[index, 'valence'] = response_data['valence']
dataframe.loc[index, 'duration_ms'] = response_data['duration_ms']
dataframe.loc[index, 'time_signature'] = response_data['time_signature']
dataframe.loc[index, 'key'] = response_data['key']
dataframe.loc[index, 'mode'] = response_data['mode']
#save log in file
with open('log.log', 'a') as f:

f.write('Song: ' + str(index) + ' - ' + dataframe['track_id'][index])
#save the dataframe in a csv file
dataframe.to_csv('Audio_Features.csv', index=False)

This resulting dataframe must be imported into PowerBi and the relationships with the previ-
ous dataset must be created:

7.0.1 Radar Chart

With the help of some radar charts, I can show the variance of these values over the years.
The final result is the following:

If you want to download the PowerBI file (pbix) you can do it from this link

43

https://github.com/chmedinap/Spotify_Data_Analysis/raw/main/spotify.pbix

Figure 7.1: Second DF

Figure 7.2: Relationships

44

Figure 7.3: Song audio features

45

Part III

Music trends in south america

46

8 Music trends in south america

coming soon

47

9 Version history

Version 2:

Date: Nov. 1.

Pages: No Changes

Details: Flow charts on current pages.

Version 1:

Date: Oct. 29.

Pages:

• An artist’s analysis
• Albums, dates and popularity
• Geolocation analysis

48

	Preface
	Getting Started
	Table of Contents
	Tools
	About me

	Consuming the api
	An artist's analysis
	API
	Libraries
	Configuration
	Workflow
	Artist profile
	Top Tracks
	Length vs popularity
	Release Date and popularity
	Conclusion

	Albums, dates and popularity
	API
	Libraries
	Workflow
	Albums
	Popularity
	Graphs
	Conclusion

	Geolocation analysis
	Libraries
	Workflow
	Get the data
	How many markets can each album have?
	What is the market with more albums?

	Analyzing my listening patterns
	Getting and cleaning the data
	Requesting the data from Spotify
	Cleaning the data
	JSON Files
	Importing the data

	Dashboard template creation
	Template creation

	Exploratory analysis
	Overall
	Listening trend over the years - Line and clustered column chart
	Shuffle and skipped times - Gauge
	Most frequent artists - Stacked bar char

	Platform and Geo
	Trend of platform over the years - Ribbon chart
	Geo Data - ArcGIS maps

	Artists
	Most listened artist over the years - Ribbon chart

	Listening time
	Played time over the years - Scatter chart
	Average duration by track (m) - Multi-row card

	PowerBI and python
	Radar Chart

	Music trends in south america
	Music trends in south america

	Version history

